Exercise 66

(a) Prove Theorem 4, part 3.
(b) Prove Theorem 4, part 5.

Solution

Part 1

Assume that f and g are continuous at a and attempt to show that $f+g$ is also continuous at a. Use the definition of continuity.

$$
\lim _{x \rightarrow a} f(x)=f(a) \quad \lim _{x \rightarrow a} g(x)=g(a)
$$

Now take the limit of $f+g$ as $x \rightarrow a$, and use the fact that the limit of a sum is the sum of the limits.

$$
\begin{aligned}
\lim _{x \rightarrow a}(f+g)(x) & =\lim _{x \rightarrow a}[f(x)+g(x)] \\
& =\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \\
& =f(a)+g(a) \\
& =(f+g)(a)
\end{aligned}
$$

Therefore, $f+g$ is continuous at a.

Part 2

Assume that f and g are continuous at a and attempt to show that $f-g$ is also continuous at a. Use the definition of continuity.

$$
\lim _{x \rightarrow a} f(x)=f(a) \quad \lim _{x \rightarrow a} g(x)=g(a)
$$

Now take the limit of $f+g$ as $x \rightarrow a$, and use the fact that the limit of a difference is the difference of the limits.

$$
\begin{aligned}
\lim _{x \rightarrow a}(f-g)(x) & =\lim _{x \rightarrow a}[f(x)-g(x)] \\
& =\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x) \\
& =f(a)-g(a) \\
& =(f-g)(a)
\end{aligned}
$$

Therefore, $f-g$ is continuous at a.

Part 3

Assume that f is continuous at a, that c is a constant, and attempt to show that $c f$ is also continuous at a. Use the definition of continuity.

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Now take the limit of $c f$ as $x \rightarrow a$, and use the fact that the limit of a constant times a function is the constant times the limit of the function.

$$
\begin{aligned}
\lim _{x \rightarrow a}(c f)(x) & =\lim _{x \rightarrow a}[c f(x)] \\
& =c\left[\lim _{x \rightarrow a} f(x)\right] \\
& =c[f(a)] \\
& =(c f)(a)
\end{aligned}
$$

Therefore, $c f$ is continuous at a.

Part 4

Assume that f and g are continuous at a and attempt to show that $f g$ is also continuous at a. Use the definition of continuity.

$$
\lim _{x \rightarrow a} f(x)=f(a) \quad \lim _{x \rightarrow a} g(x)=g(a)
$$

Now take the limit of $f g$ as $x \rightarrow a$, and use the fact that the limit of a product is the product of the limits.

$$
\begin{aligned}
\lim _{x \rightarrow a}(f g)(x) & =\lim _{x \rightarrow a}[f(x) g(x)] \\
& =\left[\lim _{x \rightarrow a} f(x)\right]\left[\lim _{x \rightarrow a} g(x)\right] \\
& =f(a) g(a) \\
& =(f g)(a)
\end{aligned}
$$

Therefore, $f g$ is continuous at a.

Part 5

Assume that f and g are continuous at a and attempt to show that f / g is also continuous at a if $g(a) \neq 0$. Use the definition of continuity.

$$
\lim _{x \rightarrow a} f(x)=f(a) \quad \lim _{x \rightarrow a} g(x)=g(a)
$$

Now take the limit of f / g as $x \rightarrow a$, and use the fact that the limit of a quotient is the quotient of the limits, provided that the denominator is not zero.

$$
\begin{aligned}
\lim _{x \rightarrow a}\left(\frac{f}{g}\right)(x) & =\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right] \\
& =\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}, \quad \lim _{x \rightarrow a} g(x) \neq 0 \\
& =\frac{f(a)}{g(a)}, \quad g(a) \neq 0 \\
& =\left(\frac{f}{g}\right)(a), \quad g(a) \neq 0
\end{aligned}
$$

Therefore, f / g is continuous at a, provided that $g(a) \neq 0$.

